
Firn Protocol | Technical Whitepaper

Captain McAteer | firnprotocol@proton.me

Firn is an advanced, zero-knowledge privacy platform for Ethereum and EVM-based L2s, which overcomes
certain key technical obstacles that competing services face. Specifically, Firn admits a highly lightweight,
client-side wallet, which runs exclusively in the web browser, and efficiently retrieves its user’s account balance
and state (and moreover generates zero-knowledge proofs on this user’s behalf). Other protocols impose sig-
nifcant computational and bandwidth complexity burdens on their users’ wallets. That is, competing privacy
protocols—including Aztec Connect and Tornado Cash Nova, as well as standalone chains like Zcash and Mon-
ero—all impose linear computational and bandwidth burdens on their wallets, in the sense that each user, upon
logging in, must perform computational work proportional to the time elapsed since the user’s last synchro-
nization. This requirement induces synchronization times in the minutes, and download requirements in the
megabytes, even for regular users. This problem has proven prohibitive in multiple real-life instances. Aztec
Connect recently shut down, for example—plausibly, because of runaway reports of an unusable service riddled
with bugs, and of inaccessible funds—and Zcash, simultaneously, has been beset by a severe “spam attack”,
which has made many wallets unusable.

Efficiency by Design

Firn bypasses this endemic problem entirely, by adopting an account-based architecture. All prior privacy
services—that is, every extant service except for Firn—uses a UTXO-based architecture, in which funds reside in
Bitcoin-like “notes”, and are redeemed in a privacy-preserving way. That is, these protocols operate essentially
like Bitcoin does, except that they cryptographically hide the numeric values stored in their UTXOs, and
moreover conceal which UTXO, in any given transaction, is actually being consumed.

This model makes it computationally difficult to receive funds, as we now explain. In order to learn its
own account state, each given wallet—in a UTXO-based system—must download, and trial-decrypt, every
output TXO posted to the network since the wallet last synchronized. Moreover, it must remain online as
frequently as possible, as well as cache state on its device. This makes synchronization even more costly on
fresh devices; in any case, it also presents serious security risks (that is, those associated with caching state
on possibly-untrusted devices). In short, in UTXO-based systems, each given user’s funds may be, in general,
spread throughout hundreds of UTXOs, and these UTXOs must be found.

In the setting of Bitcoin, wallets manage this task—i.e., that of state management—with the aid of powerful,
external indexing servers. This recourse is not available in the cryptographically private setting, for obvious
reasons; indeed, to leverage an external server, a wallet would have to hand over to that server its user’s “viewing
key”, thereby permanently and unrevocably giving that server viewing access into the user’s activity (past and
future). (In fact, an early Zcash wallet, amazingly, employed precisely this measure!) These protocols thus force
their wallets to bear this burden alone, with consequences already made clear above (or else severely compromise
their users’ security).

Firn’s architecture, on the other hand, is account-based, as we now explain. Just as Ethereum, unlike Bitcoin,
stores its users’ states in a global table of accounts, Firn, unlike UTXO-based privacy protocols, likewise stores
its users’ account states in a global table, in which these users’ account balances, now, remain continually
encrypted. Crucially, when each given user receives a payment, the user’s new account balance ciphertext
overwrites its old one. As a consequence, a user could, say, receive hundreds of payments, over the course of
a year—and remain offline throughout that entire duration, no less—and, upon logging back in, nonetheless
recover his recent account state instantly.

Our thesis is that this feature will prove—and, in fact, is already proving—to be decisive in the race between
privacy protocols. Firn’s client is extremely lightweight, and must download less than a kilobyte of data in order
to retrieve its user’s account state (regardless of how long the user has been offline); moreover, Firn’s never
caches state on the device, and is lightweight enough to easily run in Tor and on mobile devices.

Improving State-of-the-Art Protocols

Firn is based on a sequence of academic works, called Zether [1] and Anonymous Zether [2], which introduce
the account-based privacy model. Firn builds upon these works, by implementing various theoretical and
practical improvements, as well as filling certain gaps. For example, we implement all deposits, transfers, and
withdrawals in a privacy-preserving manner; [2] only discusses private transfers (the generalization to deposits
and withdrawals is straightforward). More significantly, using a few new ideas, we are able to reduce the
verifier’s complexity of Anonymous Zether to O(N), in the anonymity set size N , as opposed to O(N logN).
We refer to the paper [2] in what follows, and use that paper’s notation. The idea is to exploit the special

1

mailto:firnprotocol@proton.me
https://electriccoin.co/blog/zcash-reference-wallet-light-client-protocol/


structure of the Anonymous Zether relation (see [2, § 6.4]), in which only two of the ciphertexts (Ci, yi) (under
the public key D) are nonzero. For simplicity, we in fact restrict to the case of deposits and withdrawals, in
which only one among the relevant ciphertexts is nonzero (i.e., per the definition of the relation).

Our idea is that the verifier, given the vector (p0, . . . , pN−1) ∈ FN
q computed in [2, Fig. 4], may use both

the vectors (p0, . . . , pN−1) and (xm − p0, . . . , x
m − pN−1) ◦ (v, . . . , vN )—where v ∈ Fq is a random challenge

chosen by the verifier—as exponent vectors in successive multi-exponentiations of the input vector (Ci, yi)
N−1
i=0 of

ciphertexts. By the structure of one-out-of-many proofs, the verifier’s vector (p0, . . . , pN−1) necessarily contains
an mth power of x at precisely one index, say l ∈ {0, . . . , N − 1}. It follows, therefore, that the mth powers
of x in the vector of scalars (xm − p0, . . . , x

m − pN−1) ◦ (v, . . . , vN ) take the form (v, . . . , vl, 0, vl+2, . . . , vN ),
where here the lth index—whichever it is (it’s unknown to the verifier!)—is omitted or “exempted”, and where
the remaining indices are moreover nonzero and unpredictable to the prover. If the prover can cancel, from
this multi-exponentiation, some lower-order terms in x, and nonetheless obtain a vector of plaintexts demanded
by the verifier, it necessarily follows that the prover’s plaintexts other than the lth are in fact encryptions of
zero. This is exactly what we need to prove. Note that our method requires just a constant number of multi-
exponentiations, and so has complexity O(N); in particular, it completely avoids use of the number-theoretic
transform, which requires O(N logN) scalar multiplications. This particular procedure, and our improved
verifier at large, can be seen at Firn’s WithdrawalVerifier.sol.

Best-Ever Privacy

The final major technical contribution of Firn pertains to its sampling procedure for anonymity sets (i.e., its
solution to the problem mentioned in [2, § 1.3]). A suitable selection procedure must simultaneously satisfy a
handful of desiderata. For one, it must be highly efficient—say, logarithmic at worst—in the total state size of
the network and in the total number of previous Firn users. Furthermore, it should return anonymity sets which
are highly “representative”, in the sense that their elements come from some distribution which is identical to—
or, at least, as close as possible to—the distribution of actual transacting users. In particular, it should hold
that these users’ respective times elapsed since last activity closely match the distribution describing actual
users’ times since last activity. The key fact is that actual users are much more likely than (say) random users
to have been recently active. Indeed, an actual withdrawer, with rather high likelihood, has deposited recently;
a random depositor, with high likelihood, has not deposited recently. Selecting truly random depositors, in
particular, would be a bad strategy, since the real depositor would “stand out” (in most instances) among the
random depositors, as the sole account that was recently active. (In fact, an issue related to this affected a
previous version of Monero [3], and was subsequently fixed.)

Our idea is thus to sample depositors randomly, but not uniformly randomly ; rather, we sort depositors
by time elapsed since most recent activity, and then sample them with a strong preference for recently active
accounts. Specifically, we arrange depositors into a self-balancing binary search tree, sorted in ascending order
by time of most recent activity. We then sample randomly from this tree, with an exponential preference for
subtrees residing beneath nodes in the tree’s right-most path. We achieve this in the following way, roughly.
Writing L for the height of the tree, we first uniformly sample a level l ∈ {0, . . . , L− 1}. We then take l steps
down the tree, walking rightwards each time, thereby reaching some account y, say. Having done this, we then
sample uniformly from the subtree rooted at y, so obtaining some account, yi, say. We repeat this sampling
procedure until we obtain N distinct accounts (y0, . . . , yN−1).

The anonymity sets which arise in this way are highly representative. For example, when N = 16, about
97% of them contain the single most recently-active account. In this light, even a user who just deposited may,
upon withdrawing, nonetheless obtain strong plausible deniability, since most anonymity sets contain the most
recently active user in any case. In practice, several technical matters arise. For example, we use red-black trees,
which are, in general, not perfectly balanced; our sampling procedure must accommodate this. Separately, we
bin users into “epochs” (see [1, § 2]); each node in the tree actually represents an epoch, and not an account.
The code implementing our sampling procedure is available at EpochTree.sol.

References

[1] Bünz, B., Agrawal, S., Zamani, M., Boneh, D.: Zether: Towards privacy in a smart contract world. In:
International Conference on Financial Cryptography and Data Security (2020)

[2] Diamond, B.E.: Many-out-of-many proofs and applications to Anonymous Zether. In: IEEE Symposium on
Security and Privacy. pp. 1800–1817 (2021)

[3] Möser, M., Soska, K., Heilman, E., Lee, K., Heffan, H., Srivastava, S., Hogan, K., Hennessey, J., Miller, A.,
Narayanan, A., Christin, N.: An empirical analysis of traceability in the Monero blockchain. In: Proc. Priv.
Enhancing Technol. pp. 143–163 (2018)

2

https://github.com/firnprotocol/contracts/blob/mainnet/WithdrawalVerifier.sol#L114-L117
https://github.com/firnprotocol/contracts/blob/mainnet/EpochTree.sol

